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ANALYTICAL INVESTIGATION OF THE SIGNIFICANCE OF TURBINE-INLET

IN HIGH-ENERGY ROCKET TURBODRIVE APPLICATIONS*

By Harold E. Rohlik

SUMMARY

The effect of turbine-inlet temperature on rocket gross weight was

investigated for three high-energy long-range rockets in order to ex-

plore the desirability of turbine cooling in rocket turbodrive applica-

tions. Temperatures above and below the maxi_am that is permissible in

uncooled turbines were included. Turbine bleed rate and stage number

were considered as independent variables.

The gross weight of the hydrogen-reactor system was more sensitive

to changes in turbine-inlet temperature than either the hydrogen-oxygen

or the hydrogen-fluorine systems. Gross weight ofthe hydrogen-reactor

system could be reduced by 2.6 percent by the use of cooling and a

turbine-inlet temperature of 3000 ° R. The reductions in the first stages

of the hydrogen-oxygen and hydrogen-fluorlne systems were 0.7 and 0.2

percent, respectively. The effect of turbine-lnlet temperature on rocket

gross weight was small because the resulting turbine weight and bleed

rate variations were small. Since these small gains must be balanced

against considerations of greater cost, weight, and complexity as well

as lessened reliability with a system utilizing a cooled turbine, none

of the systems investigated showed gains warranting the use of turbine

cooling.

INTRODUCTION

The gross weight of a rocket with a given payload and a given mission

is influenced in two ways by the turbine design selected: (1) the mass

of the turbine must be accelerated to the burnout velocity, altitude, and

direction and consequently influences the expenditure of the propellant

and (2) the turbine bleed rate (that fraction of the propellant used by

the turbine) directly influences the effective specific impulse of the

total propellant being consumed. These conditions indicate the desira-

bility of low turbine weight and high turbine work per pound of turbine

flow.
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Turbine specific work (work per pound of flow) increases with in-
creasing inlet temperature for a given pressure ratio so that turbine
cooling offers the possibility of savings in xocket gross weight. An

investigation of the effect of turbine-inlet temperature on gross weight

has been conducted with three high-energy propellant systems: a single-

stage rocket utilizing hydrogen with a nuclear-reactor heat source and

two-stage chemical systems employing hydrogen-oxygen and hydrogen-
fluorine combination. The mission selected for consideration was a

simple vertical mission with constant gravity and no air drag that was

determined to be the equivalent of a long-range mission. The turbodrive

systems considered included a single turbine driving one or two propel-

lant pumps with a small fraction of the propellant flow as its working

fluid. Investigation of the effect of turbine-inlet temperature required

consideration of variable bleed rate and stage number in the calculation

of the gross weight-to-payload ratio. Turbine-inlet temperature was

varied through a range above and below the maximum permissible for un-

cooled blades. Turbine-exhaust thrust recovery was also considered.

This report presents the method employed in the gnalysis and the

results of the analysis in terms of gross weight-to-payload ratio for

several turbine-inlet temperatures, turbine_stage numbers, and bleed
rates.

SYMBOLS

Cp specific heat at constant pressure, Btu/lb/°R

g acceleration due to gravity, 32.2 ft/sec 2

h altitude at end of powered flight, ft

I specific impulse, sec

n number of turbine stages

P payload, lb

p pressure, lb/sq in abs

structural parameter excluding effect of ";urbine weight,

_=We'P-W T

Wpr

T turbine-inlet temperature, OR

t duration of powered flight, sec



U

V

W

Y

k

P

turbine blade tip speed, ft/sec

velocity, ft/sec

weight, lb

flow rate, lb/sec

ratio of turbine flow to pumpflow (bleed rate)

thrust recovery coefficient, IT/I n

speed work parameter

blade metal density, lb/cu ft

Subscripts:

av

b

cr

e

ex

g

n

P

pr

ref

T

V

X

time average

burnout, end of powered flight

critical, corresponding to a flow Mach number of 1.0

empty

turbine exit

gross

rocket nozzle

pump

propellant

reference

turbine

vacuh_n

axial component

5
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METHODOFANALYSI_

Rocket Requirements and A_sumptions

The rocket systems selected for this investigation included a
nuclear-powered hydrogen system and two chemical systems utilizing the
combination of hydrogen with oxygen and hydrogen with fluorine. A ratio
of first-stage gross weight to second-stage gross weight of 5.0 was
selected for both chemical rockets(the hydrogen-reactor rocket had only
one stage). The effect of turbine-inlet tenperature on mlssile gross
weight was investigated in only the first stage of the two-stage systems.

The effect of turbine-inlet temperature was studied by determining
the changes in turbine weight and turbine flow rate that were associated
with changes in turbine-inlet temperature and turbine stage number. The
variations in turbine weight and flow rate affected the gross weights of
the rockets for the fixed missions considered so that gross weight could
be related to the turbine-inlet temperature and turbine stage number.

The rocket structural and flight parameters corresponding to the
mission selected are listed in the following table (the values shown
serve as the reference conditions for each system):

Rocket
system

Hydrogen-
reactor

Hydrogen-
oxygen

Hydrogen-
fluorine

Ratio
of

gross
weight

to
empty
weight

in
first
stage,
Wg/We

3.70

a4.21

a4.32

Ratio
of

!gross

weight

to

pay-
load

in

first

stage,

Wg/P

6.26

5.0

5.0

Ratio

of

gross

weight

to

pay-
load

in

S ec ond

stage,

Wg/ ,

3.12

2.49

Over -

all

ratio

of

gross

weight
to

pay-
load

6.26

15.60

12.45

Dur_ _ion

c_

powe Fed

fli_ :t,
t

SED

3C

a19 L

a21 7

Time- Bleed Struc-
I

average rate tural

spe- y param-

cific et_er,

impulse S

Iav, n

720 0.03 0.15

a340 .02 a.05

a397 .01 a.04

aFirst stage only.

Equations for simple vertical flight wi_h no air drag and constant

gravity were used in order to facilitate the investigation of turbine



temperature effect. Equation (i) gives the velocity at the end of
powered flight and is a rearranged form of equation (12-18) of reference
1.

- (1)
Vb = Iavg In W 1

The turbine flow results in a loss in impulse as shown in the fol-

lowing equation for time-averaged effective specific impulse:

Iav = Iav,nll - (1 - _av)YJ (2)

where Iav n is the time-averaged specific impulse for full flow through
the rocket'nozzle, y is the bleed rate as a fraction of the total pump

flow, and _av is the time-averaged ratio of turbine-exhaust specific

impulse to rocket-nozzle specific impulse. Calculations were made for

_av = 0 assuming no thrust in the direction of flight and also with the

maximum thrust obtainable with a converging nozzle directed for thrust

in the direction of flight.

Equation (3) gives the altitude at the end of powered flight and

was derived as the time integral of instantaneous velocity expressed as

in equation (1).

( Vb + gt - I gt) (5)
h = t lavg Wg/W e - i

Values of lay , W_/We, and t from the preceding table were then

used to define a vertical mission for each system as an equivalent of

the selected mission. Calculated values of velocity and altitude are

given in the following table:

System

Hydrogen-reactor

Hydrogen-oxygen

Hydrogen-fluorine

ft/s ec

19,471

a9,275

ali,527

h_

ft

2,044,653

a544,159

a776,860

aFirst stage only.
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Relation BetweenRocket Characteristics and Turbine Characteristics

The turbine influences the rocket gross weight through the effects
of bleed rate and turbine weight, as noted previously. The effect of
bleed rate on the ratio of gross weight to empty weight and on burning
time maybe obtained by first solving equation (2) for effective speci-
fic impulse lav and then solving equations (i) and (3) simultaneously
for Wg/We and t with the fixed values of V and h. The quantities
Wg/We and t are therefore unique functions of bleed rate y, and may
be used to relate structural weight and turbine weight to gross weight
for a range of bleed rates.

Weights of the rocket structure and the turbine are related to
gross weight and payload in the following equation:

Wg= WT + P + Wpr + WprS (4)

where the structural parameter S is defined as the ratio of empty

weight without turbine and payload to the weight of the propellant con-

sumed. Similarly, for the empty weightj

We = + P + Wprs (5)

Equations (4) and (5) can be combined and rearranged to provide an ex-

pression for the ratio of gross weight to payload where

WglP -- wglWe ¢6)

VVo-

Equation (6) then can be solved for a range of turbine weight parameters

WT/W P with Wg/W e and t values corresponding to a range of bleed

rates y. The ratio of gross weight to paylo_d may then be shown as a

function of bleed rate y for several values of the turbine weight

parameter as in figure 1 for the hydrogen-reactor system. This figure

is representative of the first group of worki_g curves used in the in-

vestigation. In the case of the two-stage ro.:kets, equations (1), (2),

(3), and (6) were solved for the first stage only. The resulting ratio

of gross weight to payload was the ratio of f_orst-stage gross weight to

second-stage gross weight. The over-all ratio of gross weight to pay-

load was obtained by multiplying the first-stage gross-to-pay weight

ratio by the fixed second-stage gross-to-pay weight ratio.



Effect of Turbine-Inlet Temperature on Turbine Weight and Bleed Rate

Reference 2 describes a method for relating the turbine weight
parameter WT/Wp to the required pumpwork, blade speed, inlet gas con-
ditions, blade stress, bleed rate, gas properties, and a range of tur-
bine stage number. Included in reference 2 is a set of curves relating
turbine efficiency to the speed-work parameter k and turbine stage
number. Thls information was obtained analytically from velocity-
diagram and -loss considerations. The loss coefficients used in the
analysis were determined from results of small transonic turbine cold-
air tests. The subject investigation utilized these curves with the
assumption that the trends with turbine staging and the speed-work
parameter are valid with other gaseousworking fluids such as hydrogen,
steam, and hydrogen fluoride. The levels of efficiency maybe somewhat
different in these fluids but this would not significantly affect the
results of the subject investigation.

The examplesdescribed in this report included specification of a
single turbine driving one or two propellant pumpswith a small frac-
tion of the propellant flow as a working fluid and utilization of thrust
from the turbine exhaust in a converging nozzle. Alternate drive systems
such as two turbines operating in flow parallel or a turbine operating
in a gas other than the propellant could also be investigated in this
manner.

Turbine-inlet temperature was varied above and below the maximum
value for uncooled turbines, which was defined as 1860o R. The lowest
temperature considered was 1500° R and the highest temperature, considered
the practical maximumfor a cooled turbine, was 3000° R.

Properties of pure gases, hydrogen, steam, and hydrogen fluoride,
were taken from reference 5. The gas mixtures in the chemical-rocket
turbines were determined by assuming complete combustion in a fUel-rlch

mixture so that the mixtures always consisted of hydrogen and a single

product of combustion.

Values of certain parameters were arbitrarily specified in the

solution for the turbine weight parameter, and are as follows:

Blade metal density, p, lb/cu ft .................. 494

Untapered centrifUgal blade stress, lb/sq in .......... 40,000

Exit axial critical gas velocity ratio, (Vx/Vcr)ex ......... 0.5

Exit hub-tlp radius ratio .................... 0.79

Blade tip speed, U, ft/sec ................... 1400

Turbine-inlet pressure, p, lb/sq in. abs ............. ll00

The use of lighter materials such as aluminum was not considered here.



Pumpwork was calculated as that requhred to raise the liquid pres-

sure from a tank storage pressure of 35 pounds per square inch absolute

to a pump exit pressure of 1200 pounds per square inch absolute with a

pump efficiency of 0.7. This value of pump exit pressure influences the

level of bleed rate required for the turbine, but, since it is fixed,
not the effect of changes in turblne-lnlet temperature.

The results of the calculations outlined previously were used to

plot the turbine weight parameter WT/W P as a function of bleed rate y

over a range of stage numbers and turblne-inlet temperatures. Figure 2

is an example of the results of these calculations and shows the varia-

tion in turbine weight parameter with bleed rate and stage number for

the hydrogen reactor system with a turbine-inlet temperature of 1880 ° R.

A single curve was then obtained by reading the lowest value of

WT/W P from any of the stage-number curves at several values of bleed

rate. This curve, the lower envelope of the stage-number curves, repre-

sents the lightest turbine for each bleed rate that s_tisfies the pump

work requirements at a particular turbine-inlet temperature. Figure 3

shows curves of this type plotted against _leed rate for each of the

turbine-inlet temperatures considered, and is an example of the second

set of working curves used in this investigation.

Matching Rocket Systems with Turbine Designs

for Minimum Gross Weight

The method used in matching turbine designs with each rocket system

may be briefly su_m_arized as follows:

(1) A bleed rate is selected and for each temperature line on the

plot of turbine weight parameter against bleed rate a value is read

for the turbine weight parameter WT/Wp, (fig. 3).

(2) The ratio of gross weight to payload is read corresponding to

the bleed rate being checked and the turbize weight parameter obtained in

step 1 from the appropriate plot of gross-to-pay weight ratio against

bleed rate (fig. 1).

(3) Steps 1 and 2 are repeated for several bleed rates and gross-

to-pay weight ratio is plotted against turbLne-lnlet temperature

(fig. 4).
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RESULTS AND DISCUSSION

Effect of Turbine-Inlet Temperature on Gross Weight

Without turbine exhaust recovery. - Figure i shows gross-to-pay

weight ratio of the hydrogen-reactor system plotted against bleed rate

for several turbine weight parameter values, and zero turbine-exhaust

thrust recovery. Gross weight increases almost linearly with both bleed

rate, which reduces effective specific impulse, and with turbine weight,

which increases the rocket empty weight.

Figure 2 shows the turbine weight parameter plotted against bleed

rate for several turbine stage numbers and a constant value of turbine-

inlet temperature for the hydrogen-reactor system. Each stage-number

curve shows a decrease in the turbine weight parameter with increasing

bleed rate because the required turbine specific work decreases with in-

creasing turbine flow rate. This decrease in required turbine specific

work results in a decrease in the required exit flow area because of the

smaller pressure ratio required and, consequently, a decrease in the

turbine size in the range of bleed rates considered. Each stage-number

curve has a minimum bleed rate, which occurs at that value where the

required ideal specific work equals the total energy of the turbine-

inlet gas. As this bleed-rate limit is approached_ the turbine pressure

ratio and required exit flow area become infinite. The differences among

the limits of the various stage-number curves, then, result from dif-

ferent limiting efficiencies, since the inlet temperature is constant

for all curves shown. The variation in turbine efficiency with stage

number is taken from reference 2, as noted previously. All turbines con-

sidered in the subject investigation were in the low range of the turbine

speed-work parameter where turbine efficiency increases with stage

number.

Figure 4 was plotted with results of the turbine-rocket matching

procedure described previously, and shows gross-to-pay weight ratio as a

function of turbine-inlet temperature for several values of bleed rate

and no turbine-exhaust thrust recovery. Each bleed-rate curve has a

relatively flat portion which indicates little change in turbine size,

and also a lower temperature limit beyond which the turbine cannot pro-

duce the required shaft power. As the temperature is reduced toward this

limit the required pressure ratio increases thus increasing the required

turbine-exit flow area and turbine size, causing the rocket gross weight

to increase. The temperature limit occurs when the required ideal speci-

fic work equals the total energy of the turbine-inlet gas. At this point

infinite exit flow area and turbine size would be required.

The lower envelopes of the curves of figure 4 (dashed lines) repre-

sent the minimum gross weights obtainable at any turbine-inlet temperature
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between 1500° and 5000° R. The bleed rate decreases with increasing
temperature, and it is largely this change in bleed rate that causes the
reduction in gross-to-pay weight ratio. Figure 4(a) showsthat the bleed
rate decreases from 0.030 to 0.017 as the temperature is increased from
1500° to 3000° R. The corresponding values for the turbine weight param-
eter WT/WP are 0.75 and 0.57.

The dashed line of figure 4(a) showsa gross-to-pay weight ratio of
6.192 at a turbine-inlet temperature of 1860C R and 6.030 at 3000° R, a
maximumsaving of 2.62 percent in gross weight madepossible by using a
cooled turbine. This gross-weight saving would amountto 811 pounds for
a payload of 5000 pounds. It would be offset, however, by the increases
in cost and complexity as well as the decreased reliability of a cooled
turbine.

The dashed lines of figures 4(b) and (c) showgross-weight savings
of muchsmaller magnitude for the chemical systems. The following table
showsthe decreases in gross weight for all three systems as the turbine-
inlet temperature is increased from 1860o to 5000 o R.

System

Hydrogen-

reactor

Hydrogen-

oxygen

Hydrogen-

fluorine

Decrease

in gross

weight,

percent

2.62

.66

•24

Reduction in

gross weight

for 5000-1b

payload,

_Ii

510

;_50

The gross-weight savings shown in this t_le are not sufficient to

warrant the use of turbine cooling in any of the systems investigated.

At this point it may also be noted that the gross-weight savings

for the chemical systems are listed for the f_rst stage only and that

these figures are valid for the whole rocket _mlywith a constant ratio

of gross weight to payload in the second stage. If it is assumed that

the second stage utilizes a cooled turbine in the same manner as the

first stage, then the savings in over-all groEs weight would be nearly
double those listed in the table.

Figure 5 shows the sensitivity of gross-weight ratio to changes in

turbine-inlet temperatures for the three systems investigated. Changes

in temperature have a greater effect on the gross weight of the
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hydrogen-reactor system for two reasons. First, the pumpwork required
is muchhigher, approximately 70 Btu per pound comparedwith 21 for the
hydrogen-oxygen system and 8 for the hydrogen-fluorine system and, con-
sequently, a greater bleed rate is required for comparable turbine pres-
sure ratios and efficiencies. This effect causes a greater fraction of
specific impulse to be affected by changes in turbine operation. The
second reason is the large difference in gas properties between pure
hydrogen and the mixtures of gases employed in the chemical-rocket tur-
bines. This is shownin figure 6 where the product of specific heat and
temperature (total energy) at the turbine inlet for the three systems
is plotted against temperature. The pure hydrogen curve has the greatest
slope because of its high specific heat and the fact that specific heat
increases with temperature. The gas mixtures used in the chemical-
rocket systems have lower specific heats and these decrease with in-
creasing temperature because more oxidant is required in the fuel-rich
mixtures in order to produce the higher temperatures.

With turbine-exhaust thrust recover_. - The effect of turbine-

exhaust thrust recovery was evaluated by calculating the specific im-

pulses obtainable with a converging nozzle at the turbine operating

points associated with turbine-inlet temperatures of 1500°I 1860 °, and

5000 ° R on the dashed lines of figure 4. Specific impulse values were

computed for exhaust to a vacuum, and are plotted in figure 7 in terms

of the specific impulse ratio. The impulse ratios for all three systems

increase with turblne-inlet temperature and lie between 0.55 and 0.61,

with maximum values of 0.52, 0.61, and 0.61 for the hydrogen-reactor,

hydrogen-oxygen, and hydrogen-fluorine systems, respectively.

The $ values calculated for figure 7 and for sea-level operation

were used to determine gross-to-pay weight ratios for the vertical mis-

sions used in the investigation. These values for gross-to-pay weight

ratio were lower than those determined for _ = 0 because of the higher

effective specific impulse values. The effect of turbine-inlet tempera-

ture on gross weight was smaller because of the reduced effect of bleed

rate on effective specific impulse.

Figure 8 shows the effect of turbine-inlet temperature on gross

weight with and without turbine-exhaust thrust recovery. The reference

gross weight used in figure 8 was that corresponding to a turbine-inlet

temperature of 1860 ° R without any turbine-exhaust thrust recovery, (as

shown in fig. 4). The following table shows the decreases in gross

weight made possible by increasing the turbine-inlet temperature frGm

1860 ° to 5000 ° R with turbine-exit thrust recovery. The values shown

here correspond to those presented previously for zero thrust recovery.
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System

Hydrogen-reactor
Hydrogen-oxygen
Hydrogen-fluorine

Decrease
in gross
weight_
percent

2.20
•15
•19

R._duction

Ln gross

w-_ight for

3000-1b

?ayload,

percent

66O

i00

115

The changes noted in gross-weight savings from the values shown

previously for 6 = 0 are small, and these values indicate the same

conclusion. Savings in gross weight made possible through the use of

turbine cooling are very small_ and must be balanced against considera-

tions of cost, complexity, and reliability•

It may be noted that recovering thrust from turbine exhaust gas with

a constant turbine-inlet temperature of 1860 ° it is more effective in re-

ducing gross weight than is increasing the turl)ine temperature from

1860 ° to 3000 ° R with no thrust recovery.

Effect of Turbine Stage Number

Information calculated to determine the e:!_fect of turbine-inlet

temperature on gross weight was also used to d_termine the effect of

turbine stage number on rocket gross weight at two turbine-inlet tempera-

tures. This information is presented to illus;rate the interdependence

of stage number and turbine-inlet temperature ;_nd how they affect rocket

gross weight.

Figure 9 shows the effect of staging for _Ii three systems at a

turbine-inlet temperature of 1860 ° R. This fil,nlre shows that the

hydrogen-reactor system requires the largest _nnber of turbine stages

in order to obtain gross weight near the mini_n and also that the

hydrogen-reactor system is most sensitive to c]langes in turbine stage
number. The reason for this is the previously noted fact that the pump

work requirements are greater for the hydrogen-reactor system requiring

a greater bleed rate and thus providing a gre_;er fraction of the specif-

ic impulse which is affected by turbine operatzng characteristics•

The hydrogen-reactor requires a ten-stage turbine to achieve gross

weight near the minimum, while the hydrogen-o_rgen and hydrogen-fluorine

systems require seven and four stages, respect_vely. These stage numbers

were selected as the minimums required to keep gross weight within 0.25

percent of the lowest value shown.
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The lower envelopes of the groups of curves shownin figure 9 were
used to show the effects of stage numberand temperature on gross weight
for the three systems. A stage number of 12 was arbitrarily selected in

order to present these curves in ratio form for comparison.

Figure i0 shows the gross-weight ratio plotted against turbine stage

number for each rocket system at two temperatures, 1860 ° and 5000 ° R. The

reference gross weight used in the gross-weight ratio is that correspond-

ing to 12 stages at a turbine-inlet temperature of 1860 ° R. The hydrogen-

reactor is again most sensitive to changes in turbine characteristics

with a relatively large range in gross weight (6 percent) resulting from

the ranges in stage number and turbine temperature shown (fig. lO). The

hydrogen-oxygen system (fig. lO(b)) shows a gross-weight range of 4 per-

cent while the hydrogen-fluorine system gross weight (fig. lO(c)) varies

through only _ percent. The effect of stage number on gross weight is

about the same at both temperatures (1860 ° and 3000 ° R) for each system.

SUMMARY OF RESULTS

The effect of turbine-inlet temperature on the weight character-

istics of three high-energy propellant rockets has been investigated

analytically and the major results may be summarized as follows:

i. The hydrogen-reactor system was more sensitive to changes in

turbine-inlet temperature than either the hydrogen-oxygen or the

hydrogen-fluorine systems. The reasons for this were the higher pump

work (which required higher bleed rates), the higher specific heat of

the turbine inlet gas, and the fact that the specific heat of pure hydro-

gen increases with temperature while the specific heat of the combustion

products in the chemical-system turbines decreasedbecause of the chang-

ing ratio of oxidant flow to fuel flow.

2. The study of the three systems showed that no system indicated

sufficient decreases in rocket gross weight to warrant consideration

of turbine cooling in achieving high turbine-inlet temperatures. The

hydrogen-reactor system showed a possible decrease of 2.62 percent in

gross weight while the hydrogen-oxygen and hydrogen-fluorine systems

showed decreases of 0.66 and 0.24 percent, respectively, with zero

turbine-exhaust thrust recovery.

3. The recovery of thrust obtainable from turbine exhaust gas through

a converging nozzle increased with increasing temperature in all three

systems considered. Maximum values of the ratio of turbine-exhaust spe-

cific impulse to rocket-nozzle specific impulse were 0.52 for the

hydrogen-reactor system, 0.61 for the hydrogen-oxygen system, and 0.61

for the hydrogen-fluorine system. Consideration of turbine-exhaust
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thrust recovery indicated appreciable savings in gross weight at all
temperature levels considered but did not materially influence the effect
of changes in turbine-inlet temperature.

4. The hydrogen-reactor system requires the largest numberof turbine
stages in order to obtain gross weight near the minimumand also is most
sensitive to changes in turbine stage number, the reason being the higher
pump-workand bleed-rate requirements. Stage numbersrequired for near
minimumgross weight were ten for the hydrogen-reactor system, seven for
hydrogen-oxygen# and four for hydrogen-fluorine. This was true at both
turbine-inlet temperatures examined, 1860o and 5000° R.

Lewis Research Center
National Aeronautics and SpaceAdministration

Cleveland, Ohio, October 8, 1958
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